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We report numerical data obtained on the special-purpose computer PER- 
COLA for the exponent 7 of the electrical conductivity of 2D percolation. The 
extrapolation yields 7= 0.9745-t-0.0015 and a correction to the scaling exponent 
03 = 1.2 _+0.2. 
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Transport phenomena on fractals, especially on the percolation cluster at 
the threshold, have recently been studied with much detail (see ref. 1 for 
review). It has become clear that phenomena such as anomalous diffusion, 
electrical conductivity, or the phonon spectrum are all dominated by one 
dynamical exponent. In the case of electrical conductivity this exponent 7 
describes how the resistivity R diverges with the linear size n of the system, ~ 

R . . ~ n  t. In two dimensions this exponent happens to agree, because of 
duality, with the exponent ~ that determines how R vanishes with n if the 
cluster is superconducting. 

The numerical value of this dynamical exponent has been the subject 
of substantial controversy. Based on various arguments, ~ = 91/96 = 0.948 (2) 
and 7= 1 (3) have been proposed for two-dimensional percolation. Sub- 
sequent numerical work using different methods has supported values of 7 
between these two conjectures (4'5) and excluding them both from their error 
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bars. In the meantime, however, new arguments favoring the above conjec- 
tures were put forward (6) and doubts about the size of the numerical error 
bars have been occasionally raised. In order to shed light upon this issue, 
we performed another numerical determination in 2D of ~ = ~" applying the 
method of ref. 4, but investing an at least 500 times larger effort in com- 
putation, using the special-purpose computer PERCOLA. (7"8) 

The method (4"9) consists in calculating exactly the electrical resistance 
of a strip of width n and length L where a fraction p of bonds is supercon- 
ducting (p = 0) and the complementary fraction 1 - p is normal conducting 
(p = 1). For bond percolation this fraction p is just the bond percolation 
threshold Pc and for site percolation it is given by the probability that two 
neighboring sites are both occupied, each individual site being occupied 
with the critical probability of site percolation. In the transverse direction 
we impose periodic boundary conditions. In the longitudinal direction the 
n currents Ii and potential drops Vi that are measured at each of the n left 
endpoints are related through 

Vi= ~ RijI j (1) 
j=l 

while all the right endpoints are grounded. The resistance matrix {Ru} is 
calculated iteratively by adding bond after bond. It is updated according to 

R~ = R U + p6i~6~j (2) 

for a longitudinal bond at line c~ and according to 

R~= Rij-- (Ri~- Rifl)(R~ R13J) (3) 
p + R ~  + Rp~ - R~, -- Rp~ 

provided R~  + R ~ - R ~ -  R ~  is nonzero, otherwise R~ = R0, for a trans- 
verse bond between lines e and/3. After many iterations the resistance per 
length R H ( n / L )  converges toward its limit value R,, for an infinite strip as 
L ~/2. For large n, R~ should vanish like n-'~ and in two dimensions ~= 
because of duality. (~~ 

The calculation of R U via (2) and (3) was performed on the special- 
purpose computer PERCOLA, (7) a 64-bit floating-point processor with an 
architecture optimized for calculations of the type given by (3). Random 
numbers X~ generated through the lagged-Fibonacci sequence (1~) 

Xk = (X~ ~ + Y~_~) mod 2 sz (4) 

are calculated in parallel. PERCOLA is microprogrammable and turns at 
25 Mflops. For our type of calculation it is about 10% faster than the 
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vectorized program run on one processor of the Cray X-MP. Memory  
allows the calculation of strips of width n<~255 in two dimensions. 
Technical details about  the machine are given elsewhere. (8) 

All our calculations were done on the square lattice. We considered 
bond percolation at Pc = 0.5 and site percolation at Pc = 0.592745 (2). (12) 
Our  results are presented in Table I. The lengths L of the strips are at least 
100 times longer and the statistical error bars ARn at least ten times smaller 
than in ref. 4. One hundred days of C P U  time is needed to obtain these 
data, 50 days alone for the two values for n = 40, since the time required 
grows with Ln 3. 

While generating the above data we encountered an unexpected 
problem that turned out to be due to the random numbers. Using the 
generator ( r , s ) = ( 1 7 ,  5) of (4), which had been implemented also on 
another special-purpose computer,  (13) we observed for bond percolation at 
n = 9  a spurious deviation of the data from the expected monotonic 
behavior by about  ten times the size of the error bars (independent of the 
seed). We also encountered weaker, significant deviations at some other 
sizes (e.g., n = 5) and also for the generators (r, s ) =  (31, 13) at n = 10 and 

Table I. Resistance R .  per Length for Bond and Site Percolations, 
Its Statistical Mean Square Deviation AR. ,  and the Length L of the Strip 

As a Function of the Strip Width  n 

B o n d  Site 

n R ,  J R n  x 10 6 L R,, A R  n • 10 -6  L 

2 0 .274836 41 1.40E + 09 0 .455632 27.6 1.00E + 09 

3 0 .176294  35 9 .92E + 08 0 .328978 17.8 1.00E + 09 

4 0 .128238 50 1.02E + 09 0.255901 20.3 1.00E + 09 

5 0 .101079 23 1.02E + 09 0 .208946 15.8 1.00E + 09 

6 0 .083692 23 9 .60E + 08 0 .176553 19.5 1.00E + 09 

7 0 .071592 27 1.02E + 09 0 .152897 19.8 1.00E + 09 

8 0 .062579 18 1.02E + 09 0 .134827 26.8 1.00E + 09 

9 0 .055687 21 9 .60E + 08 0 .120639 14.9 1.00E + 09 

10 0 .050185 16 1.02E + 09 0 .108915 23.9 1.00E + 09 

11 0 .045672 19 1.02E + 09 0 .099313 17.8 1.00E + 09 

12 0 .041936 22 1.02E + 09 - -  - -  - -  

15 0 .033609 13 1.02E + 09 0 .073930 12.1 1.00E + 09 

17 0 .029740 16 1.02E + 09 - -  - -  - -  

20 0 .025237 40  7 .68E + 08 0.056381 11.6 1.00E + 09 

21 0 .024153 10 9 .28E + 08 . . . .  

25 0 .020355 69 2 .60E + 07 - -  - -  - -  

40 0 .012845 5 6 .00E + 08 0 .028737 12.7 5 .10E + 08 
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(r, s ) =  (55, 24) at n =20. Although we do not understand the origin of 
these flaws, they are apparently inherent to the family of generators of (4). 
These problems could only be observed because of the long sequences (up 
to 1011 ) that we generated; still, the periods of the three generators are 
respectively larger than 10 14, 1018, and 1025. We note that in other cases 
where sequences of this length have been used, similar problems were 
observed. (14) Because of this problem we were forced to repeat our 
calculation for a large part of the values of Table I with up to three 
different generators in order to identify the biased data. So, effectively we 
spent much more CPU time. 

In Fig. 1 we show our data multiplied by n ~ a s  a function of n in a 
log-log plot. Due to universality, the curves should become parallel, 
straight lines of slope 0 .98 -7  for large n. Because of the corrections to 
scaling, they are curved, fortunately in the opposite way. So, the bond per- 
colation data imply 7 ~< 0.98, while the site percolation data imply 0.96 ~< 7, 
excluding therefore already both conjectures 91/96 {2) and 1~3). 

We tried several fits based on the minimalization of the square dis- 
tance from the individual data points. A logarithmic prefactor fits very 
badly and can be excluded. Fitting with one power-law correction gives 
leading exponents for site and bond percolation that differ by at least 1%. 
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Fig, 1. Log-log plot of Rnn ~ against n for (b) bond and (s) site percolations. The bond 
percolation data are multiplied by a factor 2.5 to make it possible to show all data in one 
figure. 
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Fitting a logarithmic correction gives about the same result. The precision 
of our data should, however, allow for a determination of 7 better than 1%. 

To better understand the above problem, we explicitly imposed that in 
the relation 

R ~ = n  ~(c~ + c 2 n  ~'~) (5) 

not only 7, but also the leading correction exponent co should be universal 
(c~ and c2 are nonuniversal constants). So we plotted R , n  ~ against n -~ for 
different choices of 7 and co and tried to find 7 and co such that both site 
and bond percolation data fall on straight lines. This is not possible, 
reflecting the problem found before. For  site percolation a straight line can 
be obtained for reasonable values of co ( ~ 1.2). For bond percolation the 
data are never aligned and for the parameters for which site percolation 
data are straight the bond percolation data lie on an S-shaped curve. In 
Fig. 2 we show such a situation. It becomes clear that higher order correc- 
tions play an important role in bond percolation. Only for sizes n/> 7 does 
the leading correction seem sufficient, since the data seem to follow a 
straight asymptotic line (see Fig. 2). 

We sought exponents for which the data are reasonably consistent 
with the scenario of Fig. 2, i.e., straight lines for all site percolation data 
and for bond percolation with n ~> 7. We found 

7= 0.9745 _+ 0.0015 and co = 1.2 + 0.2 
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Fig. 2. Plot of Rnn ~ against n -1-3 for (b) bond and (s) site percolation. The bond per- 
colation data are multiplied by two to make it possible to show all data in the same figure. 
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The value of  7 falls within the error  bars of  all previous estimates ~4'5) and its 
error  bar  is several times smaller than previous error  bars. 

Besides the very precise calculation of  the dynamical  exponent  of 2D 
percolation, which excludes the two conjectures 91/96 and 1, we estimated 
the leading correct ion to the scaling exponent  and found that  in the case of 
bond  percolation,  sizes n < 7 are domina ted  by even higher corrections. We 
discovered that r a n d o m  number  generat ion is the most  critical numerical 
difficulty and we believe that for the future of  high-speed computa t ion  it is 
of fundamenta l  impor tance  to find generators that  have no pathologies 
when one has sequences of the order  1011 . Our  calculation would not  have 
been possible wi thout  the special-purpose computer  P E R C O L A ;  future 
work calculating ~" and s in three and four dimensions on P E R C O L A  is 
planned. 
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